Tutorial 9

March 30, 2017

1. Expansion method

Solve the following inhomogeneous wave equations:

Uy — g = f(2,1)
w(0,) = h(t), u(l,t) = k(t) (1)
u($’ 0) = @Z)(‘/E)v ut(xv 0) = 1/’(@

Solution: First, expand every term in the problem by Fourier sine series, that is,
= nm 2 [ nmw
x,t) = Zun(t) sin(—ux), un(t) = / u(z,t) sin(—z)dz,n=1,2,---
ot l L Jo l

and similarly,

9 l
ug(x,t) Zvn sin( , vp(t) = l/ u(x,t) sin(?m)d:r,n =1,2,---

Ugy (T, 1) = an sin( ), wp ( l/umxtsm l x)dzx,n=1,2,-

nm
=3 fult)sin(—z), £) dr,n =1,2,
x,t) ;f()sm(lx) /f:c sin( )atn
:Zgbnsin(nlix), /qb sin(—xz)dz,n=1,2,---
n=1
and l
- 2
= an sin(?ar), Yy = l/ P(x) sin(?m)dm,n =1,2
n=1 0
Note that ;
2
vp(t) = l/ uge(x,t) sin(nTﬂx)da: = u(t)
0
and
2 /! 2 2
wp(t) = l/ Ugy (T, 1) sin(nl—ﬂa:)dx 7ux x,t) sin( —x - fﬂ ux(a:,t) Cos(nlix)dx
0 0
2 l 2 !
= lnlﬂ u(w,t) cos(nTﬂx)d:c - = n7r 2/ u(z,t) sin —a:)dx
0

:_7{(—1)”k(t)—h(t)} ( )2 (2).

Then the problem implies that

” 2nm nmw

(1) = 121K () — A(0)} — (T V()] = ()
un(o) = ¢n, n( ) = ¢n



by the uniqueness of Fourier series, i.e.

o 2n

() + A (t) = fult) = =5 {(=1)"k(t) = h(t)} =: gn(?)
un(0) = én, tn (t) = én

where )\, = 32 = ("l—”)2 this is a second order inhomogeneous ODE with constant coefficients, and it
is solvable. More precisely, the general solution to the corresponding homogeneous problem is

ﬁn(t) = A, COS(C/Bnt) + B, Sin(cﬁnt) = Anyl + Bpy2

where A,,, B, are constants to be determined and y; = cos(cf,t), y2 = sin(cf,t). A particular solution
to the inhomogeneous problem is given by variation of parameters method

" y2(5)gn(s) " y1(s)gn(s) ds

fin(t) = —y1 (¢ ds + ya(t
() ) to Wy, y2] © to Wy, y2]
where the Wronskian is given by Wyy,ya] = y,l’ z,z . Hence the general solution to above ODE is
1) 92

Uy, = Up, + Up = Ay cos(cfint) + By sin(cfByt) + Uy, where A,,, B, are determined by initial conditions.
Therefore, the solution to (1) is u(z,t) = Y7 up(t) sin(*Fx).

. Shifting data method

Consider the following inhomogeneous wave equations:
Ut — gy = F(x) coswt
u(0,t) = H cos wt, u(l,t) = K coswt (2)
’LL(CL', 0) = ¢($), ut(xa 0) = @Z}(ZU)

We wish to subtract a solution of

Uy — AUy = F(z) cos wt
U(0,t) = H cos wt, U(l,t) = K coswt

A good guess is that U should have the form U(x,t) = ug(x) cos wt, thus ug(z) satisfies

— wlug — Puf = F(x)
uo(0) = H, wo(l) = K

This is a solvable second order ODE. Thus we can find a special solution U (x,t) = ug(z) cos wt.

Let u be a solution to (1), set v = u — U, then v satisfies
Vit — czvm =0
v(0,t) =0, v(l,t) =0 (3)
v(z,0) = ¢(x) —uo(x), ue(x,0) =(x)

This is a solvable homogeneous wave problem which we can use the seperation of variables, for example.

Ags in spherical coordinates
For the three-dimensional laplacian
Ag =07+ 0.+ 02

it is natural to use spherical coordinates (r,0,¢). First, consider the chain of variables (z,y,z) —
(s, ¢, z) which is given by
T = SCOoS ¢

Yy = ssin¢



zZ =2z

By the two-dimensional Laplace calculation, we have
1 1
Uggy + Uyy = Uss + ;us + S—2u¢¢.

Second, consider the chain of variables (s, ¢, z) — (r, ¢,0) which is given by

s=rsind
z =rcosb
¢=0¢

By the two-dimensional Laplace calculation, we have
Ugs + Uzz = Upp + —Up + —5 U6
r r

Thus we have 1 1
A3 = Ugy + Uyy + Uzy = ;us + ?u¢¢ + Upr + ;Ur + 772”90-

And note that s = rsinf and us = ur% + ue% =upy + ue@. Therefore

At = & cot Bup + gy + tpr + 2ty +
= U U U “u Ugg.
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